Exercises \#1

\bullet Problem 1. Compute the first 768 digits of π. Anything remarkable? Try a few digits more for good measure.
-Problem 2. Compute $(2143 / 22)^{\frac{1}{4}}$.

- Problem 3. The masses of the electron and protron are $m_{e}=0.51109991(15) \mathrm{MeV}$ and $m_{p}=938.2723(3)$ MeV . Find an approximation of the form

$$
\frac{m_{p}}{m_{e}} \approx 2^{n} 3^{m} \pi^{p}
$$

with positive integers n, m and p. There is a solution good to 4 digits.
\bullet Problem 4. The electron's magnetic moment is $\mu=1.00115965219(1) e \hbar / 2 m_{e}$. A certain crank who posts to the Usenet "predicts" that the dimensionless constant which appears there should be

$$
1+\frac{1}{2}\left(\frac{\alpha}{\pi}\right)-\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2}+\frac{1}{4}\left(\frac{\alpha}{\pi}\right)^{3}-\frac{1}{5}\left(\frac{\alpha}{\pi}\right)^{4}+\frac{1}{6}\left(\frac{\alpha}{\pi}\right)^{5}
$$

where the fine structure constant is $\alpha=1 / 137.0359895(61)$. Could he be right?

- Problem 5. One way of getting π is via the identity $\pi=4 \tan ^{-1}(1)$, where the arctan can be developped in a series

$$
\tan ^{-1}(x)=\left(1-\frac{1}{3}+\frac{1}{5}-\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}\right.
$$

How many terms do you need to get 3 digits of π ?
\bullet Problem 6. Another such identity is

$$
\pi=16 \tan ^{-1}\left(\frac{1}{5}\right)-4 \tan ^{-1}\left(\frac{1}{239}\right)
$$

How many terms in the Taylor series do you need to get 20 digits of π ?
-Problem 7. One last numerical accident. How close is $\exp (\pi \sqrt{163})$ to an integer? You may find the following incantation of help:

In [1]:= NumberForm[\%,ExponentStep->33]
-Problem 8. Find the roots of the equation

$$
x^{5}+8 x^{4}-72 x^{3}-382 x^{2}+727 x+2310=0
$$

Do this (a) with Solve[] and (b) with Factor [].
-Problem 9. Solve the equations

$$
\exp (x)=x
$$

and

$$
\exp (x)=-x
$$

- Problem 10. Here are a set of linear equations which might arise, e.g. in a multi-loop circuit problem.

$$
\begin{aligned}
& 2 I_{1}+3 I_{2}-4 I_{3}=5 \\
& 3 I_{1}-2 I_{2}+4 I_{3}=6 \\
& 4 I_{1}+1 I_{2}-4 I_{3}=7
\end{aligned}
$$

Solve for the currents I_{1}, I_{2} and I_{3} using Solve [].

